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The variation-perturbation uncoupled Hartree-Fock procedure of Karplus and Kolker is employed 
for the calculation of the second-order properties of the water molecule. The SCF MO LCGO ground 
state wave function was chosen and the first-order perturbed orbitals were approximated in the multi- 
plicative form. The convergence of the method as well as the violation of the gauge independence are 
studied. For the preferred gauge origin at the electronic centroid the calculated proton shielding 
constant is 28.30 ppm and compares favourably with the experimental data (30.20, 30.03 _+ 0.60 ppm). 
The results for the magnetic susceptibility of the water molecule are also in reasonable agreement 
with experimental values. 

Die ungekoppelte Hartree-Fock Variationsst6rungsrechnung von Karplus u. Kolker wird fiir die 
Berechnung von Eigenschaften 2. Ordnung des Wassermolekiils verwendet. Fiir die Berechnung wird 
die SCF MO SCGO-Wellenfunktion des Grundzustandes gewiihlt, und die gest6rten Orbitale 1. Ord- 
nung werden in der multiplikativen Form approximiert. Die Konvergenz der Methode und die Frage, 
ob die Eichinvarianz verletzt wird, werden untersucht. Fiir den gew~ihlten Potential-Nullpunkt im 
Zentrum der negativen Ladungsverteilung betr~igt die errechnete Protonenabschirmungskonstante 
28,30 ppm in guter Obereinstimmung mit den experimentellen Werten (30.20, 30.03 _+ 0.60 ppm). Die 
Ergebnisse fiir die magnetische Suszeptibilit~it des Wassermolekiils sind gleichfalls in verniinftiger 
Obereinstimmung mit dem Experiment. 

Introduction 

The idea of the L C G O  (Linear Combina t ion  of Gaussian Orbitals) approxi-  
mat ion  [1, 21 in the Har t r ee -Fock-Roo thaan  SCF procedure  stimulated a rapid 
progress in large scale molecular  calculations and a number  of  reliable, near- 
Har t ree -Fock  SCF M O  L C G O  wave functions for polyatomic  molecules is now 
available [-3-6]. In spite of very encouraging results for the molecular  energies 
and several one-electron first-order properties [-4, 7], the SCF M O  L C G O  wave 
functions were only seldom utilized for the calculation of  the second-order  prop-  
erties related to external field per turbat ions  [-8-11]. To get more  information 
about  the usefulness of the L C G O  molecular  wave functions in the per turbat ion 
calculations we have under taken a systematic study of the second-order  magnet ic  
properties of  po lya tomic  molecules. Also the corresponding methods  in the 
Har t ree -Fock  per turbat ion theory have recently been analysed [-12-14]. 

The present paper  is concerned with the calculation of the magnetic second- 
order properties of  the water molecule f rom the SCF M O  L C G O  wave functions 
obtained recently by Diercksen [-15]. A part icular  at tention has been paid to the 
problem of the p ro ton  magnet ic  shielding in the water molecule. The results 
obtained are in remarkably  good  agreement  with experimental data and indicate 
the usefulness of  accurate SCF M O  L C G O  functions for the calculation of  molec- 
ular magnetic  properties. They also confirm our  previous conclusions about  the 
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validity of the simplified variation-perturbation method [16] in the case of pure 
imaginary perturbing operators [12, 13]. 

Method 

In the Hartree-Foek approximation the accurate procedure for the calculation 
of the second-order energies is known as the coupled Hartree-Fock (CHF) method 
[17-19]. Applying this method one can circumvent almost all the sum-over-states 
and related problems but one has to calculate a number of two-electron integrals. 
Usually the corresponding solutions for the first-order perturbed orbitals u~ are 
expressed in terms of the unperturbed virtual orbitals u ~ [18, 20]. However, the 
convergence of this expansion is rather slow [21, 22]. This can be improved by 
using a more general variation formulation of the CHF scheme [23] but even in 
this case the CHF procedure can hardly be applied to the calculation of the second- 
order properties of polyatomic molecules. 

To avoid the computational difficulties of the CHF method several simpler, 
so-called uncoupled Hartree-Fock (UCFIF) perturbation schemes were proposed 
[24-26, 12, 13]. The simplest one is due to Karplus and Kolker [16] and is based 
on the functional which contains only one-electron integrals. It was shown [13] 
that the validity of this approximate UCHF approach can be reasonably justified 
when the perturbation corresponds to a pure imaginary operator. 

Both, the paramagnetic part of the magnetic susceptibility tensor Z~v and the 
paramagnetic part of the nuclear magnetic shielding tensor a~v(N ) of the N-th 
nucleus are related to one-electron pure imaginary operators 

2n 2n 

Hua'~ = ~ h~'~ ~ M~(i), (1) 
i=1 i = l  

and 
2n 2 n  1 N "  

Hu~~ = ~ "'uh(~ = , ,  Z ~y-  M~ (t), (2) 
i : 1  i = l  INi  

respectively [27]. Thus, to calculate the magnetic susceptibility and the proton 
magnetic shielding constant for the water molecule we applied the Karptus- 
Kolker method. In Eqs. (1) and (2) the superscripts (n, m) refer to the order with 
respect to the external magnetic field 9rg/i and nuclear magnetic moment I~ of the 
N-th nucleus, respectively. The symbol M~ (B = A, N) denotes the #-th component 
of the angular momentum operator with the origin at Rn and 2n corresponds to 
the number of electrons. 

The tensors Z~v and a~v can be expressed in terms of the second-order energies 
E(2,o) and ~(1,a) /iv --/iv 

z~v  = - --.v~E(2' o) , (3 )  

aPuv = -/iv F31'1) (4) 

where (in atomic units) 

E(~v, o) = �88 ~2 ~e ( ~u~l, o)i n~l, o) 17,(o)) 

= �89 N~ ~ . (a o) h(~,o)l (5) 
( . , . "  -v  ,u}~ 

i = 1  
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and 
E(1 ,i ) = (~2 ~g < (/./(i, o)[ H~O,1) 1 7j(o)) ,v 

2~ ~ ~ ~ ~..(1,O) lh(O,,)lulO)> (6) 
\ -'i/~ i "'v 

i=1 

71(1,o) and ~(oA) denote the first-order perturbed 2n-electron wave functions 
while u! 1'~ and u! ~ correspond to the first-order perturbed orbitals resulting 
from the perturbations (1) and (2), respectively. Greek subscripts refer to a given 
cartesian component of the perturbing operator. An expression similar to (5) 
can also be written down for the second-order energy ]~(0.2) Although ~(o,2) has --B'v " - - . v  
no direct physical meaning, its numerical values can be useful in the study of the 
convergence of the variation procedure. 

According to Karplus and Kolker [16, 28] we shall approximate the first-order 
perturbed orbitals in the multiplicative form (product-form approximation) 

(1.0) f (1 .0)u(0)  - ~ / . . (0)  / ' (1 .0) . . (0 ) \ . . (0 )  
ui.  =JIB" "i "."k JiB" '*i / '*k , (7) 

k = l  

u (oA)  __ f.(0,1)u(0) ~ (8) / , , (0 )  / ' (0 .1) . . (0) \  ..(0) 
lB" .; t ,  " 'z  - -  \ '~k J i B .  ~ i  / '~"k 

k = l  

where f i~  "~ and fi(~ ~ 1)are  the variation functions to be determined by extremizing 
an appropriate functional [16, 28], It should be pointed out that both E (2'~ and 
E~ ~ are given by an extremum of the corresponding functionals and allow for an 
independent determination of the first-order perturbed orbitals -(1,o) and "(ore l~iB" ~iB" " 
On the other hand, E (1'1) is neither maximum nor mininmm of an appropriate --#B" 
functional [28] which involves simultaneously both u! 1'~ and u (~ Although 
Kolker and Karplus [28] in their calculations of the nuclear magnetic shielding 
determined these first-order perturbed orbitals by extremizing the functional for 
E(1A) (i o) (o i) uu we prefer to use the method which leads to uiB ,' and uiu' by an independent 

E(1.1) extremization of F (2'~ and ~(o,2) respectively. Then, the energy _ , ,  can be --B', --,B" 
calculated from (6), or alternatively from 

E(1,1) = (x2 ~ ,e  ( t//(o, 1)] H$1, o)[ 7t(o)> (9) 
B''V 

In general Eqs. (6) and (9) become completely equivalent in the limit of the exact 
solution for the first-order perturbed wave functions. This equivalence will also 
be obtained when the same analytical form of fi~ '~ and fi(u ~ is used. 

A usual procedure for the determination of the variation functions f~.o) and 
f~(u ~ is to express them in a polynomial form [15, 28, 29], e.g., 

L 

f i  (1"~ = ~ A,,,iB'gpB , (10) 
p = l  

where gpB" are the products of the cartesian coordinates with appropriate sym- 
metry properties. This approximation does not shift the nodes of the unperturbed 
orbitals and can lead to several difficulties [28, 30]. However, this should not be 
very important in the calculations of the paramagnetic susceptibility and proton 
magnetic shielding [16, 28]. The node shift problems can be avoided by using a 
generalized form of the multiplicative approximation (7) [31], but for the present 
purposes a simple product form of u (1'~ --iB" seems to be sufficiently accurate [28]. 
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Having determined the linear variation coefficients Ap,~, by the extremization 
of the Karplus-Kolker functional [16] ~ ,~(z 0) 1or r,~;' we can calculate the paramagnetic 
parts of the magnetic susceptibility and nuclear magnetic shielding tensor. The 
total magnetic susceptibility and nuclear magnetic shielding tensors are given by 
a sum of the corresponding diamagnetic (X~ and aa,~) and paramagnetic com- 
ponents [32] 

__ d d 

where 

Zdu~ = _ � 89  ~ ,  ( u l 0 ) l r n .  r t 0 t ,  v _ r A u r a ,  lu lO))  (12) 
and i = 1 

=~2 - ~ (u$O)l rN'rA~,,.--rA.rN~ lu$0)) (13) d 
O'#v i = 1 F3  

do not involve a knowledge of the perturbed orbitals. Their accuracy is only 
limited by the accuracy of the unperturbed SCF functions. 

For the exact theory the total magnetic susceptibility as well as the total 
nuclear magnetic shielding tensors should not depend on the choice of the origin 
RA for the vector potential of the external magnetic field [33]. However, when an 
approximate theory is used this so-called gauge-invariance [32] of the final result 
can be violated and, in general, the results are origin-dependent. Thus, the study 
of the origin-dependence of Zu~ and a.~ provides an additional test of the accuracy 
of the calculated properties. Moreover, Chan and Das pointed out that there are 
some gauge origins which are better than others [33]. For the magnetic suscepti- 
bility the gauge origin at the electronic centroid [33], which maximizes the absolute 
value of the diamagnetic contribution, appears to be the best one. The same point 
is considered as a good one for the calculation of the nuclear magnetic shielding, 
though it does not lead to the extremum of the corresponding diamagnetic 
contribution. Sometimes the gauge origin which gives vanishing paramagnetic 
contribution to the nuclear magnetic shielding is considered as the best one 
[34, 35] but, in general, its determination requires a previous knowledge of a,~. 

In the present calculations we have chosen two different origins for the vector 
potential of the external magnetic field and we studied the violation of the gauge 
invariance for both the magnetic susceptibility and nuclear magnetic shielding 
tensor. As it was mentioned, the paramagnetic contribution to a~ was determined 
by using Eq. (6) or Eq. (9) with the first-order perturbed orbitals obtained by the 
extremization of the functionals corresponding to E (2'~ [16] or ~(o,2) Some - - # #  - - ~ #  �9 

further details of the present approach are described in the next Section. 

Calculations 
All the results presented in this paper were obtained with the SCF MO LCGO 

wave function computed recently by Diercksen [15] and we refer to his paper for 
its complete description and discussion. It should be Pointed out that this wave 
function corresponds to the experimental geometry of the water molecule and 
the atomic coordinates (in a.u.) are given by: O (0, 0, 0), H 1 ( -  1.10717, 0, 1.43045), 
H 2 ( -  1.10717, 0, - 1.43045) (see also Fig. 1 of Ref. [15]). 
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The variation functions Ji./'(l"~ and fi~ ~ were expressed in the form (10) with 
the same set of gp. functions in both cases. For the x-component the following 
9px functions have been employed: 

9 px : Y, z,  y z ; y x 2, y3, y z 2 ; z x 2, z y2, z 3 ; y z x 2, y3 z, y z a ; (14) 

and the functions gpy and 9pz can be obtained from (14) by a cyclic permutation 
of the coordinates. The origin of the coordinate system in (14) has been chosen at 
the oxygen atom. Within the present form of 9p. its particular choice does not 
have any influence on the final results. It also follows from the molecular symmetry 
that some of the terms included in the basis set (14) do not contribute to the second- 
order energies E(u 2' o) and _..E (~ z) depending on the component under consideration. 

The form of the basis set (14) is different from that originally employed by 
Kolker and Karplus [16, 28]. For the sake of the computational convenience we 
have omitted all the terms involving the distance between an electron and a given 
center. The present approximation of the variation functions is similar to that 
recently employed by Chang [29] in the variation-perturbation study of the 
Faraday effect. 

The integrals which appear in the Karplus-Kolker functionals [16] for F32'~ --/z/~ 
and F3 ~ 2) -uu were calculated according to we]] known formulae [36, 37] with F,.(t) 
functions [37] evaluated from the analytical approximations of Schaad and 
Morrell [38]. 

The calculations were performed for two different origins for the vector 
potential of the external magnetic field. The first origin has been chosen at the 
electronic centroid (e.c.) and the second one at the hydrogen atom which shielding 
constant is determined. The first choice corresponds to the prescription of Chan 
and Das [33] and is considered as a more justified and better than the second one. 
To study the convergence of the Karplus-Kolker scheme we performed the 
calculations of the second-order energies with first 3, 6 and 9 and with all the 
members of the basis set (14). The corresponding results are presented in Table 1. 

According to the data of Table 1 both F32'~ and ~(o,2) exhibit a monotonous --gtp~ --/a/a 

behaviour with respect to the number of variation parameters. Apparently, we did 
not reach a complete convergence for all the components of these second-order 
energies and the poorest result is expected for E~; o). In this latter case the molecular 

Table 1. The study of the convergence of the calculated second-order energies a 

L b _ E ~ 2 ,  o ) _ E(O,2) E(~,*) 

x x  y y  z z  x x  y y  z z  x x  y y  z z  

3 0.170 0.745 0.165 0.263 0.403 0.138 3.360 4.573 0.824 
6 0.170 0.913 0.165 0.277 0.416 0.138 3.360 5.838 0.824 
9 0.170 0.913 0.194 0.277 0.434 0.148 3.360 5.838 0.576 

12 0.189 0.938 0.198 0.287 0.440 0.151 3.656 6.261 0.647 

" The gauge origin is taken at e.c. Both E (2'~ and E (~ are expressed in a.u. 

)~.(erg/mole- gauss 2) 4 (2 o) = - 2 . 3 7 5 9 6  Eu;; 

E ~''1) is given in ppm. 
b The number of the first terms of the basis set (14) employed in the calculation. 
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symmetry eliminates eight terms of the largest 12-term set (14) employed in the 
present study. However, we believe that, in general, the calculated second-order 
energies should not appreciably change upon addition of higher terms in (10). It 
should be also pointed out that for all the components of E (~ 2) the convergence is 
remarkably good. 

The oscillatory behaviour -~ ~1 1) o, r,,)~ can easily be understood if we recall that in 
contrary to F, (z'~ and F, (~ this second-order energy is neither maximum nor --,u/~ - - # , a  

minimum of an appropriate functional [28]. In this paper the energy ~ , n  has 
been calculated from Eq. (6) (or, equivalently from Eq. (9)) and, thus, depends on 
the accuracy of previously determined first-order perturbed orbitals. For the 
variation method the best first-order perturbed orbitals are those which extremize 
E(2,o) (c~r ~,(o, 2)~ and therefore, we treat the energies E(,I~ t) calculated with 12-term ,u,u ~ - - -  /'~,u # J~ 

representation of f{~ '~ (fi(, ~ as the best ones. 
The data of Table 1 refer to the gauge origin at the electronic centroid. Quite 

similar behaviour of the gauge-dependent second-order energies is also observed 
for the origin taken at the hydrogen atom which shielding constant is considered. 
However, the convergence (2 o) (1,1) ar of E,;' and Euu appe s to be somewhat better when 
the origin of the vector potential is taken at the electronic centroid. 

All the calculations reported in this paper were programed in Algol and per- 
formed on the ODRA 1204 computer. Almost all the final results obtained for the 
magnetic susceptibility and proton magnetic shielding in the water molecule refer 
to 12-term basis set (14). The corresponding paramagnetic contributions for 
shorter variation functions can easily be calculated from the data of Table 1. 

Results and Discussion 

a) Magnetic Susceptibility 

The components of the paramagnetic contribution to the magnetic suscepti- 
bility tensor were calculated according to Eq. (3). The corresponding numerical 
values for the gauge origin at the electronic centroid (e.c.) are shown in Table 2. 
They are compared with recent results of Arrighini et at. [39] obtained by using 
the CHF approach and also with the experimental data of Taft and Dailey [40]. 

Table 2. The paramagnetic  contribution to the magnetic susceptibility 
erg/mole - gauss z) 

This work * C H F  
[39] 

of the water molecule (in 

Exp, b 
[4o] 

Z~v~ 0.45 1.03 1.40 
Xyvy 2.23 2.06 2.33 
Z~ 0.47 0.54 0.79 
Z~.v 1,05 1.21 1.51 

" These results correspond to the gauge origin at e.c. while the CHF and the experimental data refer 
to the gauge origin at the nuclear center of mass~ The difference can be estimated as - A ) f  and does 
not  exceed 0.02erg/mole,  gauss 2. 

b There are also several other experimental data [45, 46] but  the differences are unimportant  from the 
point of view of the present comparison. 
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This  w o r k  Reference theore t ica l  resul ts  Exp. g 

I" I Ib  C H F  c VP  a G I A O  ~ D G  f 

)~x - 14.88 - 14.48 - 14.55 - 14.56 - 13.70 - 12.10 - 13.5 -t- 2.0 
Zyy - 1 4 . 2 1  - 1 1 . 8 5  - 1 4 . 3 5  - 1 4 . 4 1  - 1 2 . 6 7  - 1 3 . 2 7  -13 .7 - t -1 .8  
)~= - 1 3 . 9 9  - 1 3 . 8 1  - 1 4 . 2 2  - 1 3 . 6 8  - 1 2 . 1 5  - 1 1 . 6 8  -12 .1_+1 .6  
)~Av -- 14.36 -- 13.38 -- 14.37 -- 14.22 -- 12.84 -- 12.38 -- 13.1 _+ 1.8 

" G a u g e  or ig in  at  e.c. 
b G a u g e  or ig in  at  the hydrogen.  
c C H F  results  of Arr ighin i  et al. [39] ca lcu la ted  using an extended STO basis  set function. The gauge  

or igin is a t  the nuclear  center  of mass.  
d Va r i a t i on -pe r tu rba t i on  results  for the L C G O  wavefunct ion  of N e u m a n n  and  M o s k o w i t z  [4] wi th  

first three te rms  of (14) [49]. The gauge  or igin is a t  the oxygen.  
e Ca lcu la ted  us ing the gauge  inva r i an t  a p p r o a c h  [47] wi th  the SCF funct ion of El l i son  and  Shull  [48]. 
f Va r i a t i on -pe r tu rba t i on  results  of Das  and  G h o s e  [43] ob ta ined  wi th  a p p r o x i m a t e  local ized orbitals .  

The  gauge  or ig in  is a t  the e lec t ronic  centroid.  
g The exper imen ta l  da ta  f rom Ref. [40] for the gauge  or ig in  at  the nuclear  center  of mass.  See also 

F o o t n o t e  b to  Table  2. 

From the point of view of the theory involved in the present approach a 
comparigon with the CHF results seems to be especially important. According to 
[-12] and [13] the Karplus-Kolker scheme has a reliable justification for pure 
imaginary perturbations and the calculated paramagnetic contributions to the 
magnetic susceptibility should not differ remarkably from the corresponding 
CHF values. This is observed for the y- and z-component. A worse result for Z~x 
can be explained by the fact, that f i~ "~ has, by symmetry, only four non-zero 
variation parameters while for e.g. Ji~ '~ almost all the terms (14) do contribute to 
the second-order energy. It should be also pointed out that the CHF value of 
)~x agrees much better with the experimental value. In spite of some differences 
between the present and CHF components of the paramagnetic contribution, the 
rotational average X~v is almost the same as calculated by Arrighini et al. and 
compares favourably with the experimental value. 

In ~l'able 3 we presented a comparison of the calculated and experimental 
results for the total magnetic susceptibility tensor of the water molecule. Due to 
significant inaccuracies in the corresponding experimental data for the dia- 
magnetic contribution one can hardly ascribe a definite priority to any theoretical 
result. However, it is worth attention that the results obtained with very poor 
wave functions are in general closer to the mean experimental value. It should be 
also pointed out that our variation-perturbation result for the total magnetic 
susceptibility tensor (with gauge origin at e.c.) is practically the same as that 
obtained by Arrighini et al. within the CHF approach with extended basis set of 
the Slater-type orbitals [391. This indicates the usefulness of the SCF MO LCGO 
wavefunctions as well as the applicability of the simplified variation-perturbation 
UCHF approach to the calculation of molecular magnetic properties. 

In Table 3 we have also reported our previous variation-perturbation results 
obtained with the SCF MO LCGO wave function of Neumann and Moskowitz [4]. 
Concerning the total molecular energy they obtained slightly better result than 
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that reported by Diercksen [-15] and their wave function should be closer to that 
corresponding to the Hartree-Fock limit. However, the components of the mag- 
netic susceptibility tensor calculated with these two SCF MO LCGO wave 
functions do not differ significantly. 

The gauge dependence of our results can be seen by a comparison of the 
calculated components of the total magnetic susceptibility for the origin at e.c. 
with those obtained for the origin at H atom. According to Moccia [41], when the 
results are gauge dependent, the maximum of the total magnetic susceptibility 
gives the best approximation to the Hartree-Fock limit. Thus, following the results 
of Arrighini et al. [39], the magnetic susceptibility obtained using the electronic 
centroid for the gauge origin is probably more reliable. 

b). Proton Magnetic Shielding 

The proton magnetic shielding is undoubtedly one of the most importatit 
molecular magnetic properties of the water molecule but there were only few 
attempts to calculate it non-empirically. The only reliable result is that obtained 
recently by Arrighini et al. [39, 42] by using the CHF method. The variation- 
perturbation scheme, similar to that applied in the present study, has also been 
employed by Das and Ghose [43]. However, they used rather poor ground state 
wave function and their results were rather disappointing. The best result of Das 
and Ghose does not exceed even 60 percent of the experimental value. 

The present variation-perturbation results obtained with 12-term expansion 
for fi c1'~ are shown in Table 4. The convergence of the calculated components 
of the proton shielding constant for the gauge origin at e.c. has been analysed in 
Table 1. The gauge dependence as well as the convergence for the rotational 
average of the shielding tensor has been presented in Table 5. 

Table  4. Resul ts  for the p r o t o n  magne t i c  sh ie ld ing  in the wa te r  molecule  (in ppm) 

G a u g e  or ig in  C o m p o n e n t  

x x  y y  z z  

R o t a t i o n  average  

cr~ e.c. 3.66 6.26 0.65 3.52 
~r d e.c. 23.21 14.04 37.08 24.78 
~r e.c. 26.87 20.30 37.73 28.30 
~rP H - 76.65 - 1 1 8 . 4 4  - 3 9 . 0 1  - 78.03 
~r d H 100.96 130.37 75.67 102.33 
a H 24.31 11.93 36.66 24.30 

Tab le  5. The convergence  of the p r o t o n  sh ie ld ing  cons tan t  (in ppm)  

G a u g e  or ig in  L a = 3 6 9 12 

a~v e.c. 2.92 3.34 3.26 3.52 
~rAv e.c. 27.70 28.12 28.04 28.30 
a~v H - 79.00 - 78.37 - 78.31 - 78.03 
aav H 23.33 23.96 24.02 24.30 

" See foo tnote  b to  Table  1. 
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The experimental rotation average of the proton shielding constant in the 
water molecule is estimated as 30.20 ppm [4] or 30.03 ___ 0.60 ppm [44]. Hence, 
according to the data Of Table 5, the results obtained for each gauge origin improve 
upon the addition of new variation parameters. The best result, 28.30 ppm, is 
apparently for the gauge origin chosen at the electronic centroid. This conclusion 
agrees with our previous remarks concerning the best gauge origin for the cal- 
culation of the magnetic susceptibility. It should be also pointed out that the best 
value obtained by Arrighini et al. [44] for a particular choice of the gauge origin 
as suggested by Moccia [41], is 28.94 ppm. 

It follows from the data of Table 4 that shifting the gauge origin from e.c. to 
the shielded H atom we induce the gauge dependence of 4 ppm and according to 
Table 5 this gauge dependence is reduced with increasing number of terms in the 
variation function. It is worth attention that axx and a~z are almost gauge-invariant, 
and therefore, these values appear to be more reliable than the results for O'rr. 
This is also illustrated by the numerical data presented in Table 6. It follows from 
a comparison with the experimental data for the gauge origin at H atom, that the 
worst result is obtained for o-~r. 

In Table 6 we included also the CHF results of Arrighini et al. [44]. Evidently, 
they do not agree with the corresponding experimental values, though for the 
gauge origin at the central atom the agreement was relatively good [44]. This 
indicates a much stronger gauge-dependence of the incomplete basis set CHF 
calculations, than that found in the present approach. 

A comparison of the total components of the shielding tensor calculated in the 
present paper with those obtained by Arrighini et al. [44] for several gauge 
origins is shown in Table 7. It can be seen that our values are in general better 

Table 6. Paramagnetic contribution to the proton magnetic shielding for the gauge origin at the hydro- 
gen atom (in ppm) 

This work CHF" Exp. b 

a~x - 76.65 -52.63 - 71.79 
a~y - 118.44 -79.18 - 107.04 
a~ - 39.01 -25.76 - 36.57 
a~v - 78.03 -52.52 - 71.80 

" The CHF results of Arrighini et  al. [44]. 
b The experimental data of Bluyssen et  al. [50] taken from Ref. [44]. 

Table 7. A comparison of the results for the proton magnetic shielding in the water molecule (in ppm) 

Gauge origin ax~ ayy azz O'Av 

This work e.c. 26.87 20.30 37.73 28.30 
This work H 24.31 11.93 36.66 24.30 
CHF a O 27.57 20.60 36.52 28.23 
CHF" H 50.21 50.98 49.52 50.24 
Exp. b . . . .  30.20 

a Results of Arrighini et  al. [44]. 
b Taken from Ref. [4]. 
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than those calculated within the CHF scheme. It follows that when the gauge 
origin is chosen at e.c., both the CHF method and the Karplus-Kolker variation- 
perturbation scheme lead to remarkably good results. However, comparing the 
calculations for the gauge origin at H atom we find that the Karplus-Kolker 
scheme gives much better estimate of the proton shielding constant. Undoubtedly, 
extending the basis set of virtual orbitals one would obtain better results within the 
CHF approach. This, however, increases enormously the computational effort 
involved in this scheme. On the other hand, using the variation-perturbation 
method of Karplus and Kolker we can greatly simplify the computations without 
a considerable loss of accuracy of final results. The present calculations indicate 
also the usefulness of the SCF MO L C G O  wave functions which allow for a very 
simple evaluation of all the one-electron integrals appearing in the treatment. 

The results of the calculations described in this paper confirm our previous 
conclusions [12, 13] that for pure imaginary perturbing operators the corrections 
to the Karplus-Kolker scheme derived from the CHF functional should not be 
very important. However, one has also to point out some intrinsic limitations of the 
Karplus-Kolker method which do not arise in the CHF approach. The derivation 
of the Karplus-Kolker functional is based on the multiplicative approximation (7) 
for the first-order perturbed orbitals [16, 13]. A rigid form of the perturbed wave 
functions cannot account for the necessary node shifts, and thus, some properties, 
e.g., the magnetic shielding constants of heavy nuclei, cannot be accurately 
calculated within the Karplus-Kolker scheme [28]. Apparently, these difficulties 
do not arise when the first-order perturbed orbitals are expanded into a set of 
virtual Hartree-Fock orbitals [51] and from this point of view the method applied 
by Arrighini et al. [22, 39, 44, 51] seems to be more successful. However, in the case 
of the magnetic susceptibility and proton shielding, the rigidity of the multiplica- 
tive approximation appears to be less important  [16, 28]. 

To summarize our discussion we conclude that the Karplus-Kolker scheme 
can be considered as a simple, practical and probably sufficiently accurate method 
for the calculation of molecular magnetic susceptibilities and proton shielding 
constants. To support this conclusion the corresponding calculations for other 
molecules are in progress. Also the problem of the proton magnetic shielding in 
the hydrogen-bonded systems will be considered in a subsequent paper. 

Acknowledgemems. We wish to acknowledge the kindness of Dr. G. H. F. Diercksen who sent us 
the original computer outputs of his SCF MO LCGO wavefunctions for the water molecule and also 
the computer outputs of some one-electron properties. 

References 

1. Boys, S.F.: Proc. Roy. Soc. (London) A 200, 542 (1950). 
2. Nesbet, R.K.: J. chem. Physics 32, 1114 (1960). 
3. Kollman, P.A., Alien, L. C. : J. chem. Physics 52, 5085 (1970). 
4. Neumann, D., Moskowitz,J.W.: J. chem. Physics 49, 2056 (1968). 
5. Neumann, D., Moskowitz, J.W.: J. chem. Physics 50, 2216 (1969). 
6. Hankins, D., Moskowitz, J.W., Stillinger, F.H.: J. chem. Physics 53, 4544 (1970). 
7. Dunning, Jr.,T.H.: J. chem. Physics 55, 3958 (1971). 
8. Lim, T.-K., Linder, B.: Theoret. china. Acta (Berl.) 19, 38 (1970). 
9. Liebmann, S. P., Moskowitz, J.W.: J. chem. Physics 54, 3622 (1971). 



Proton Magnetic Shielding in the Water Molecule 145 

10. Jaszufiski, M., Oknifiski, A., Sadlej, A. J. :Acta physica polon. 
11. Kowalewski, J., Vestin, R., Roos, B.: Chem. Physics Letters 12, 25 (1971). 
12. Sadlej,A.J.: Chem. Physics Letters 8, 100 (1971). 
13. Sadlej, A.J.: Molecular Physics 21, 145 (1971); 21,959 (1971). 
14. Sadlej, A.J., Jaszuhski, M.: Molecular Physics 22, 761 (1971). 
15. Diercksen, G.H.F.: Theoret. chim. Acta (Berl.) 21, 335 (1971). 
16. Karplus, M., Kolker, H.J.: J. chem. Physics 38, 1263 (1963). 
17. Peng, H.W.: Proc. Roy. Soc. (London) A 178, 499 (1941); Allen, L. C.: Physic. Rev. 118, 167 (1960). 
18. Stevens, R.M., Pitzer, R.M., Lipscomb, W.N.: J. chem. Physics 38, 550 (1963). 
19. Diercksen, G.H.F., McWeeny, R.: J. chem. Physics 44, 3554 (1966). 
20. Moccia, R.: Theoret. chim. Acta (Berl.) 8, 192 (1967). 
21. Stevens, R.M., Karplus, M.: J. chem. Physics 49, 1094 (1968). 
22. Arrighini, G. P., Maestro, M, Moccia, R.: J. chem. Physics 49, 882 (1968). 
23. Lahiri, J., Mukherji, A.: J. physic. Soc. Japan 21, 1178 (1966). 
24. Dalgarno, A.: Proc. Roy. Soc. (London) A 251, 282 (1959)~ 
25. Tuan, D.F.-T., Davidz, A.: J. chem. Physics 55, 1286 (1971). - 
26. Langhoff, P.W., Karplus, M., Hurst, R. P.: J. chem. Physics 44, 505 (1966). 
27. Davies, D.W.: The theory of the electric and magnetic properties of molecules. J. Wiley 1967. 
28. Kolker, H.J., Karplns, M.: J. chem. Physics 41, 1259 (1964). 
29. Chang, T.Y.: J. chem. Physics 54, 1433 (1971). 
30. Langhoff, P.W., Hurst,R. P.: Physic. Rev. A 139, 1415 (1965). 
31. Oknifiski, A., Sadlej,A.J.: Acta physica polon., submitted for publication. 
32. O'Reilly, D.E.: Progr. N. M. R. Spectroscopy 2, 1 (1967). 
33. Chan, S.I., Das, T. P.: J. chem. Physics 37, 1527 (1962). 
34. Kern, C.W., Lipscomb, W.N.: J. chem. Physics 37, 260 (1962). 
35. Sadlej,A.J.: Molecular Physics 19, 749 (1970). 
36. Taketa, H., Huzinaga, S., O-ohata, K.: J. physic. Soc. Japan 21, 2314 (1966). 
37. Kern, C.W., Karplus, M.: J. chem. Physics 43, 415 (1965). 
38. Schaad, L. J., Morrell, G. O.: J. chem. Physics 54, 1965 (1971). 
39. Arrighini, G. P., Guidotti, C., Salvetti, O.: J. chem. Physics 52, 1037 (1970). 
40. Taft, H., Dailey, B. P.: J. chem. Physics 51, 1002 (1969). 
41. Moccia, R.: Chem. Physics Letters 5, 265 (1970). 
42. Arrighini, G. P., Guidotti, C.: Chem. Physics Letters 6, 435 (1970). 
43. Das, T. P., Ghose, T.: J. chem. Physics 31, 42 (1959). 
44. Arrighini, G. P., Maestro, M,  Moccia, R.: J. chem. Physics 52, 6411 (1970). 
45. Kukolich, S.G.: J. chem. Physics 50, 3751 (1969). 
46. Verhoeven, J., Dymanus, A.: J. chem. Physics 52, 3222 (1970). 
47. Pan, Y., Hameka, H.F.: J. chem. Physics 53, 1265 (1970). 
48. Ellison, F. O., Shull, H.: J. chem. Physics 21, 1420 (1953); 23, 2348 (1955). 
49. Jaszufiski, M., Oknifiski, A., Sadlej, A. J. :unpublished results. 
50. Bluyssen, H., Dymanus, A., Reuss, J., Verhoeven,J.: Physics Letters A25, 584 (1967). 
51. Arrighini, G.P., Maestro, M, Moccia, R.: Chem. Physics Letters 7, 351 (1970). 

Mr. Micha~ Jaszufiski 
Dr. Andrzej J. Sadlej 
Institute of Organic Chemistry 
Polish Academy of Sciences 
Warsaw 42, Kasprzaka 44 
Poland 

10 Theoret. chirn. Acta (Bed.) Vol. 27 


